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INTRODUCTION

The focus of research activities under NASA Grant NAG1-537 is the
geometrically nonlinear response and failure of thin-walled structural
components made from advanced composite materials. The research is
applicable to primary structural components in flight vehicle structures
that are laminated from graphite-epoxy unidirectional tape. The two
projects under investigation involve the buckling, postbuckling, ‘and failure
of structures subject to axial compression. One project is concerned with
the analysis of delamination during crippling of open section stiffeners,
and the other is concerned with the influence of dropped plies on the
response and failure of laminated plates. Both experimental and theoretical
methods are used to study the fundamental mechanisms limiting the load-
carrying capacity of these components. The experimental activities have
been accomplished in cooperation with the Structural Mechanics Branch of the
NASA Langley Research Center using their facilities.

INTERLAMINAR STRESS POST-PROCESSOR

The purpose of the interlaminar stress post-processor development is to
evaluate the delamination failure mode of the crippling specimens in Ref. 1.
The specimens tested in Ref. 1 were thin-walled open section stiffeners
subject to axial compression, and the analysis of their geometrically
nonlinear response was done using the STAGS (STructural Analysis of General
§hells) computer code. The STAGS code was used to evaluate in-plane
stresses and intralamina modes of failure initiation, but interlaminar
stress response and the prediction of delamination was outside its current
capability.

The STAGS code did not have the capability to predict interlaminar
stresses because it is based on virtual work and assumed displacements for
thin shell elements; i.e., structural configurations for which plane stress
approximations are appropriate. A conventional engineering practice is to
estimate the out-of-plane stress components from the three-dimensional
elasticity equations of equilibrium, using the linear distribution through
the thickness of the in-plane stress components. This procedure, however,
requires displacement derivatives of order 2p, where p designates the
order of the highest displacement derivatives in the internal virtual work
expression (or strain energy density increment). Derivatives of order 2p of
the interpolation functions for the displacements within an element are
meaningless. Consequently, the methodology of the interlaminar stress post-
processor development is to construct higher order interpolations of the
displacement field over an assembly of elements, and then take order 2p
derivatives of it.

Two interpolation techniques for approximating a displacement function
from discrete data have been attempted. The first technique constructed a
truncated Fourier Series representation, and the second technique
constructed a Chebyshev polynomial representation. The merits of these
techniques were judged by sampling a known analytic function at discrete
points in its domain, and computing the errors between the interpolation of
the function and its first four derivatives and the known exact values.



The analytic function used for the comparison is an approximation to
the buckling mode of a uniaxially compressed, orthotropic, rectangular plate
whose loaded edges are clamped, one unloaded edge is clamped, and the other
unloaded edge is free. The buckling mode is the out-of-plane displacement
w(x,y) of the plate, in which the x-axis is along the length of the plate in
the direction of the applied load, and the y-axis is across the width of the
plate. The length of the plate in this example is two-and-a-half times its
width. To make the buckling mode of definite value, it was normalized such
that the maximum out-of-plane displacement at the middle of the free edge
was equal to the thickness of the plate. This particular displacement
function was selected because it is similar to the displacement response of
a stiffener's flange during local buckling. The exact function and details
of the construction of the Fourier Series are given in Ref. 2. (Reference 2
is also in the appendix of this report.) o

Fourier Series Representation

The norms of the Fourier Series approximation to the displacement and
its first four derivatives using a 21 x 11 rectangular grid of sample points
are given in the third column of Table 1. This grid consists of twenty-one
equally spaced locations along the length of the plate, and eleven equally
spaced locations across the width. The norm of a quantity is defined to be
the square root of the sum of the squares of that quantity over all grid
points. The norms of the exact function and its first four derivatives are
shown in the second column of Table 1, and the percent error of the
approximate norm to the exact is given in the fourth column. Very large
errors in some of the third and fourth derivatives computed from the Fourier
Series occur. Third and fourth derivatives are required to calculate the
interlaminar shear and normal stresses, respectively. Although not
presented here, increasing the grid to #1 x 21 sample points did not improve
the computation of the third and fourth derivatives. Thus, the Fourier
Series method of computing interlaminar shear and normal stresses from
discrete displacement data, as provided by a finite element computer code
for example, would be too inaccurate for engineering purposes.

The reason for the inaccuracies in the higher derivative data computed
from the Fourier Series is due to Gibbs phenomena; i.e., a "ringing" in the
truncated Fourier Series representation of the function in the vicinity of
the boundaries of the plate. Since the buckling displacement and its
derivative normal to the edge are zero on the three clamped edges, and are
non-zero on the free edge, the periodic extension of this function, or the
protracted function, exhibits discontinuities. Consequently, the infinite
series convergence is non-uniform at the plate boundaries, and the truncated
series exhibits oscillations, or ringing, in the vicinity of the boundaries.

Efforts were made to reduce the Gibbs phenomena. A smooth protracted
function was constructed from the discrete displacement data by defining a
function from the grid point data along the free edge that interpolated the
displacement and its normal derivative there, and also satisfied the
vanishing of the displacement and normal derivative along the remaining
three boundaries (see Ref. 2). This function defined by the free edge data
was subtracted from the original displacement field to define the smooth
protracted function, and then a Fourier Series was constructed by  sampling
the smooth protracted function at the grid points. This approach



substantially reduced the Gibbs phenomena in the displacement and its firstg
two derivatives, but the third and fourth derivative data were still very
oscillatory near the free edge. 1In addition, smoothing of the higher
derivative data was used to reduce the oscillation in the data, but this did
not substantially reduce the errors. The errors reported in Table 1 are
based on defining a smooth protracted function and smoothing the higher
derivative data.

Chebyshev Series Representation

The norms of displacement and its first four derivatives for a 20 x 10
rectangular grid of Chebyshev points are given in the third column of Table
2. The twenty locations along the length of the plate correspond to the
zeros of the twentieth Chebyshev polynomial, and the ten locations across
the width correspond to the zeros of the tenth Chebyshev polynomial. The
spacing of grid points is not equal along the length or width. Thus, the
grid of sample points in the Chebyshev representation are not the same
spatial locations as in the Fourier Series representation; so the exact
norms shown in the second column of Table 2 do not equal those in the second
column of Table 1. The absolute value of the percentage errors between the
approximate and exact norms with respect to the exact are given in column
four of Table 2. The percentage errors are remarkably small with respect to
those computed by the Fourier Series representation, with the maximum error
being 0.1% in the norm of the fourth derivative with respect to y. For
this example then, the Chebyshev representation gives superior results.

POSTBUCKLING OF DROPPED-PLY LAMINATES

Laminated panels containing dropped plies (terminated internal plies)
are common in aircraft wing construction in which the skin stiffness is
reduced from root to tip. Dropped plies result in a thickness discontinuity
which can reduce the strength of the panel. Experiments reported in Ref. 3
showed that a 12% - 50% reduction in compression strength can occur for
buckling susceptible specimens with respect to buckling resistant specimens
having the same dropped-ply laminate construction. Thus, the influence of
the dropped-ply thickness discontinuity on the postbuckling response and
failure is an important issue, and the focus of this project under the
current grant.

Kantrovich's method is being used to compute the geometrically
nonlinear response of laminates containing dropped plies. For a plate with
simply supported unloaded edges, the displacements are expanded in a Fourier
Series in the width-wise coordinate y, which is the coordinate normal to
the unloaded edges. The trigonometric basis functions of the Fourier Series
satisfy the kinematic conditions along the simply supported edge. Ordinary
differential equations in the axial coordinate x are derived in
Kantrovich's method for the "coefficients", or generalized coordinates, of
the trigonometric basis functions in the Fourier expansion via the principle
of virtual work. In addition to boundary conditions at the two loaded edges
of the plate, transition conditions at the dropped-ply location result.
(The dropped-ply site is modelled as a step change in the thickness of the
plate.) Thus, the mathematical problem reduces from a solution of nonlinear
partial differential equations to the solution of a set nonlinear ordinary
differential equations with multipoint boundary conditions. The number of
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ordinary differential equations depends on the number of terms, denoted by
N, retained in the Fourier expansion.

The stability equations to compute the buckling load for the laminated
plate with a symmetric thickness change, and subject to uniaxial in-plane
compression, are a linear set of ordinary differential equations with
multipoint boundary conditions as obtained by Kantrovich's method. This
eigenvalue problem was solved for thick, specially orthotropic, dropped-ply
plates by finding complementary functions satisfying the homogeneous
differential equations, and then imposing the boundary conditions to get the
characteristic equation for the eigenvalues. A sixth-order transverse shear
deformation plate theory was used. The results are documented in Ref. 4,
and show that transverse shearing deformations can significantly affect ‘the
buckling load and the mode for thick laminated plates having a step change
in thickness relative to a Kirchhoff plate theory. (Reference 4 is also in
the appendix of this report.) '

The major drawback to the solution methodology employed in Ref. 4 was
the computation of the complementary functions, which would be difficult to
do for a large number (N) of terms retained in the Fourier expansion. Also,
the transcendental terms in the characteristic equation for larger values of
N would lead to numerically ill-conditioned computations for the
eigenvalues,

Currently work is in progress to solve the postbuckling problem for the
dropped-ply laminate using the knowledge gained in the solution to the
buckling problem. Newton's method will have to be used to iterate for the
solution at each load step in the postbuckling analysis. The linear
ordinary differential operators that need to be solved in each iteration are
very similar to the differential operators of the buckling problem. Instead
of seeking complementary functions, and then general solutions, to these
linear equations, we are using the field method (Ref. 5) to numerically
obtain the linear solutions. The field method is a way to solve multipoint
boundary value problems for linear, ordinary differential equations using
initial value integration schemes (like Runge-Kutta). "Field relations" are
used to stabilize the numerical integration against exponentially growing
homogeneous solutions. Since this method is applied to the governing
differential equations, derivatives the order of the differential equations
are computed directly. This permits the computation of interlaminar
stresses from the three-dimensional elasticity equations of equilibrium once
the plate solution is obtained by the field method. Thus, in addition to
computing the postbuckling response, the delamination failure modes of the
dropped ply specimens in Ref. 3 can also be studied.
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Table 1 Norms of the displacement and its first four derivatives
" by the Fourier representation on a 21 x 11 grid.

Norms Percent
Derivative Exact Approx. Error
W 0.3225 0.3126 3.1
W,X 0.4680 0. 4469 4.5
w,Y 0.6940 0.6819 1.8
W, XX 1.176 1.028 12.6
W, Xy 1.007 0.9749 3.2
W,yy 1.457 1.438 1.3
W, XXX 2.956 18.19 -515.3
W, XXy 2.531 2.232 11.8
W,XyYy 2.114 2.055 2.8
W, YYYy 4.848 4,398 9.3
W, XXXX 7.429 991.1 -13241.
W, XXXY 6.361 43.88 -589.8
W, XXYY 5.314 §,.765 10.3
W, Xyyy T.035 6.287 10.6
W,YYyyy 14.66 41,64 -184.0



Table 2 Norms of the displacement and its first four derivatives
by the Chebyshev representation on a 20 x 10 grid.

Norms Percent
Derivative Exact Approx. Error
W 0.3230 0.3230 =0
W, X 0.5065 0.5065 =0
W,y 0.5785 0.5785 0
W, XX 1.592 1.592 =0
W, Xy 0.9070 0.9070 =0
W,yy 1.329 1.329 0.0066
W, XXX 3.199 3.199 =0
W, XXy 2.852 2.852 =0
W, Xyy 2.084 2.084 0.0066
wW,Yyy 4,445 L. huy 0.0104
W, XXXX 10.06 10.06 =0
W, XXXy 5.729 5.729 =0
W, XXYY 6.551 6.551 0.0066
W, XYYY 6.969 6.969 0.0104
W,YYYY 14.18 1417 0.1016
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Order 2p Derivatives from p-Differentiable Finite
Element Solutions by a Spectral Method

Eric R. Johnson and David L. Bonanni

Aerospace and Ocean Engineering Department
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0203

Summarx

The displacements and their first p-1 derivatives are continuous across
element boundaries for conforming elements in the finite element

representation of a Cp ! variational problem. That is, a variational
problem in which the highest derivative of the state variable in the
functional is order p. For plate bending problems based on Kirchhoff theory,
the state variable is the out-of-plane displacement and p = 2. This paper
discusses the problem of computing derivatives of order 2p for a laminated
composite plate from the assembly of elements in which the element
displacements have p-differentiablity within the element. Order 2p
derivatives of the out-of-plane displacement are necessary to compute
interlaminar stresses.

Introduction
Delamination is a common failure mode in laminated composite

structures. However, most finite element analyses for built-up structural
components are based on Kirchhoff theory which assumes a state of plane
stress and hence neglects interlaminar stresses. The engineering approach to
compute the interlaminar stresses from the Kirchhoff theory is to integrate
the three-dimensional equilibrium equations for the out-of-plane stress
components using the linear distribution in the thickness coordinate of the
in-plane stress components from the Kirchhoff theory [1]. This is difficult
to implement in finite element solutions because such a proceedure implies
that fourth order derivatives of the out-of-plane displacement are required
when the finite element formulation only requires continuity of the
displacement and its first derivatives between elements. Thus taking fourth
order derivatives of the finite element representation of the displacements
within an element is meaningless. The method presented in this paper uses
the Discrete Fourier Transform of the finite element displacement data over

the whole domain of the plate to determine a finite number of Fourler Series

. “coefficients for the displacement. The truncated Fourier Series 1is

differentiated to obtain the higher order derivatives. This approach to
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compute derivatives from discrete data was used by Tielking and Schapery [2]

in a shell contact problem.

Spectral Method
The spectral method is used in this paper as an efficient computational

tool to determine Fourier Series coefficients from discrete displacement
data. The method is reviewed in the context of representing the out-of~plane
displacement of a plate. Designate this displacement as f(x,y), 0 S x £ a,
and 0 £y £ b, where a and b denote the length and width , respectively, of
a rectangular plate. It is assumed the plate is modelled in the finite
element analysis such that there are M equally spaced intervals between
nodes in the x-direction, and N equally spaced intervals between nodes in
the y-direction, where M and N are even integers. The extension of the
function f(x,y) outside the domain of the plate, or the protracted function,
is defined by periodicity in x with period a, and periodicity in y with
period b. The protracted function and its first derivatives are assumed to

1
be continuous; i.e., f(x,y) has C continuity.
The complex Fourier Series representation of f(x,y) is

oo

f(x,y) = 2 Y c(m,n) exp[ewi(mx/a + ny/b)], i = /-1. (1)

m-_-—a) n=—m

Evaluating f(x,y) in eqn. (1) at the nodes (XJ’ yk) = (ja/M, kb/N), where j

= 0,1,2,...,M-1, and k = 0,1,2,...,N-1, we obtain

£(3,k) = ) ) e(m,n) w&m wﬁ" (2)

m=-—o n=-—

5 yk), and W, = exp(2ni/M) and Wy = exp(2wi/N) are the

weighting kernels. The doubly infinite sum in eqn. (2) may be restructured

in which f(j,k) = f(x

in the form

M§1 N§1 jm kn :
£(j,k) = c_ (m,n) W W (3)
m=0 n=0 P M N
where

cp(m,n) = pZ-m sz_a c(m + Mr, n + Ns); ﬁ : g:::::::x:: 4)

Eqn. (3) defines the Inverse Discrete Fourier Transform, and shows that the

" sequences f(J,k) and cp(m,n) are Discrete Fourier Transform (DFT) pairs.
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Thus, the sequence cp(m,n) is determined from the DFT of the sequence f(j,k)

by the formula
M-1 N~1 i
¢ (mn) = /(M- [ I £3.K) W, Jw
P : §=0 k=0

-nk m= 0,1,..

N ! n=20,1,...,N-1 (5)
The Fast Fourier Transform algorithm can be used to compute the DFT of the
sequence f(j,k) in eqn. (5).

For large values of M and N in eqn. (4), the terms cp(m,n) are good

approximations to the Fourier Series coefficients. The dominate Fourier
coefficients in the infinite sums on the right-hand-side of eqn. (l4) occur
for values of r and s equal to either -1 or 0. Thus

c(m,n) = cp[m+M-H(—m), n+N-H(-n)], |m| < M/2 and |n| < N/2 (6)

in which H( ) = 1 if the argument is > 0, and H( ) = O if the argument is <
0. If m=+ M/2 or n = + N/2, then eqn. (6) is valid if cp is divided by

two. If bothm = + M/2 and n = + N/2, then eqn. (6) is valid if cp is

divided by four. With the Fourier coefficients approximated by eqn. (6), the
truncated Fourier Series representation of f(x,y) is

M/2 N/2
rix,y) = ) I  c(mn) exp[2wi(mx/a + ny/b)] (7
m=~-M/2 n=-N/2

Orthotropic Plate Example

Although the objective is to use the spectral method to compute
derivatives of finite element data, the methodology 1is tested here by
sampling an analytic function, computing its derivatives by the spectral

method, and comparing derivatives computed by the spectral method to exact
values. The analytic function chosen for this purpose is an approximate
buckling mode for a rectangular plate subject to uniform compression at x =
0 and x = a. The plate is clamped along edges x = 0, x = a, and y = 0, and
is free along the edge y = b. It is laminated from AS4/3502 graphite-epoxy
tape with material properties E, = 18.5 msi, E, = 1,64 msi, v,, = 0.30, and

G,, = 0.87 msi. The laminate consists of sixteen plies with a stacking
sequence [th5/0/90]28. The plate's dimensions are a = 2.5 in., b = 1.0 in.,

and the thickness is 0.080 in. The approximate analysis neglects the twist
curvature-bending moment coupling of anisotropic plate theory, and uses

" Kantrovich's method in Trefftz's criterion to determine the buckling mode.
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The buckling mode is normalized such that the maximum displacement at x =
a/2 and y = b is equal to the thickness of the plate. The result is
wix,y) = [1 - cos(2nx/a) ] [K,exp(ay/b) + K,exp(ay/b) + K,sin(By/b)

+ K,cos(By/b)] (8)

4 2

- - ~2
where K, = 5.6196 x 10 in., K, = 1.4571 x 10 in., K; = 2.4399 x 10 in.,

-2
K, = -1.5133 x 10 in., o = 3.0919, and 8 = 1.7753.

The protracted function obtained from w(x,y) in eqn. (8), and its first

partial derivative in y (denoted w,y), are discontinuous at integer

multiples of y = b. The truncated Fourier Series representation of w(x,y)
would exhibit Gibbs phenomena near y = b, because of the nonuniform
convergence at the discontinuity. To avoid the Gibbs phenomena, a polynomial

function wp(x,y) is defined such that the difference function

f(x,y) = wix,y) - wp(x.y) (9)

t
has the C continuity properties discussed previously. The polynomial is

selected to match the essential boundary conditions, i.e., w and its
derivative normal to the edge, at the nodal points along the edge. For this

example, the polynomial selected is
2 2 2
Mo 0GY) = x (xma) y [£(x) + (y-b)e(x)] (10)

in which f(x) and g(x) are Mth order interpolation polynomials. Polynomials
f(x) and g(x) are defined by the M+1 nodal values of w(xj,b) and w,y(xj.b),

respectively, where x‘j = ja/M, j = 0,1,...,M,

Denoting the approximation to the function w(x,y) as w(x,y), then

w(x,y) is the sum of wp(x.y) and the approximation of f(x,y) as given by

eqn. (7). The norms of w(xj,yk) and ;(xj,yk). and their first four

derivatives, are compared in Table 1 for M = 20 and N = 10. The norm of a
discrete function is defined as the square root of the sum of the squares of
the discrete function values over all nodal points. The approximate function
norms in Table 1 are determined from smoothed data values; i.e., for an
interior node, the value of the function at that point is replaced by the
average value of the function at the node plus the function values at the

, elght adjacent nodes. The smoothed data gives slightly better results than

" raw data. It is clear from Table 1 that for derivatives of the same order
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errors increase as the number of differentiations in x increase with respect
to those in y. Also, errors increase with increasing order of the
derivative. It is likely that the high order interpolation polynomials f(x)
and g(x) cause severe oscillations in the higher order derivative data,
especially for derivatives in x. A least squares fit of lower order
polynomials for f(x) and g(x) may decrease this oscillation in higher order
derivatives with respect to x. However, continuity of the protracted
function at the node points along y = b is sacrificed if lower order
polynomials for f(x) and g(x) are used. The loss of continuity leads to

Gibbs phenomena, which can also result in severe oscillations.

Acknowledgement
The research for this paper sponsored by NASA Grant NAG1-537.

References

1. Bonanni, D. L., Johnson, E. R., and Starnes, J. H., Jr., "Local Buckling
and Crippling of Composite Stiffener Sections," Center for Composite
Materials and Structures Report CCMS-88-08, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061, pp. 126-136.

2. Tielking, J. T., and Shapery, R. A., "A Method for Shell Contact
Analysis," Computer Methods in Applied Mechanics and Engineering, Vol. 26,
1981, pp. 181-195.

Table 1 Norms of the exact and approximate displacements and there
first four derivatives on a 21 by 11 rectangular grid

Norms - Percent

Derivative Exact Approximate Error

W 0.322498 0.312629 3.06
W, X 0.467957 0.446934 4 .49
W,Y 0.694032 0.681892 1.75
W, XX 1.17610 1.02820 12.58
W, XYy 1.00707 0.974863 3.20
w,yY 1.45716 1.43758 1.34
W, XXX 2.95587 18.1876 ~515.30
W, XXY 2.53104 2.23268 11.79
W, XYy 2.11439 2.05507 2.81
W,YYY 4,84802 4,3984Y 9.27
W, XXXX 7.42892 991.130 -13,241.
W, XXXY 6.36120 43.8807 ~589.82
W, XXYY 5.31405 4.76466 10.34
W, XYYy 7.03466 6.28657 10.63
W,YYYY 14.6630 41.6433 ~184.00
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COMPRESSION BUCKLING OF THICK ORTHOTROPIC PLATES
WITH A STEP THICKNESS CHANGE

Eric R. Johnson and Carlos G. Davila
Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061-0203 USA

The buckling analysis of laminated plates
with a step thickness change is important in
the design of aircraft wing skins. Stiffness
tailoring of wing skins made from filamentary
composites can be accomplished by terminating
internal plies along the span from root to tip.
The terminated plies, or dropped plies, result
in an abrupt thickness change. Buckling
analyses using classical theory are presented
by DiNardo and Lagace [1] for graphite/epoxy
plates with dropped plies, and by Mikami, et
al. [2] for orthotropic plates with a step
thickness change. Both of these papers show
that the buckling load of a plate with a step
change in thickness is bounded from below by
the buckling load of a uniform plate with the
thickness of the thin section, and bounded from
above by a uniform plate with the thickness of
the thick section.

The purpose of this paper is to show the
influence of transverse shearing deformations
on the buckling of thick, specially orthotropic
laminated plates with a step change in
thickness. The example problem and nomenclature
are shown in Fig. 1. A rectangular plate
subjected to uniaxial compression with the step
perpendicular to the load axis, spanning the
width of the plate, and symmetric about the
middle plane of the plate 1is shown in the
figure. Buckling coefficents are presented for
a simply supported square plate (a = b) with a
centrally located step (a, = a, = a/2) as the

thickness t, of one half is decreased relative
to the thickness t, of the other half for a

plate of constant weight. For a square plate of
constant weight with a centrally located step,
the sum of the thicknesses of the thin and
thick sections is constant, and equal to twice
the average thickness of the plate. The average
thickness is denoted by t, and we consider two
thickness-to-width ratios
0.2.

Laminate stiffnesses are computed for a
three layer [0/90/0]T stacking sequence where

the zero-degree fiber direction is along the
load axis, and each layer is fdentical. The
layer elastic properties are EL/ET = 30, G, /E

LT T
- 0.6, GTT/ET“- 0.5, vur T " 0.25, where L

and T denote directions parallel and transverse
to the fibers and Vi is the major Poisson's

ratto: This cross-ply laminate is the same one
considered in References [3] and [4], in which
the effect of transverse shearing deformations
on the compression buckling of uniform
thickness plates were considered. The

- v

t/b = 0.1 and t/b =

transverse shear stiffnesses A,, and Agg are

computed under the assumptions of a uniform
distribution of the transverse shear strains
through the thickness, and a parabolic
distribution of the corresponding shear
stresses; see Eqn. (2.61) in Reference [5].

Values of the dimensionless buckling
coefficient K as a function of t,/t, for

classical laminated plate theory (CLT), and for
shear deformation theory (SDT) with t/b = 0.1
and t/b = 0.2 are shown in Fig. 2. The buckling
coefficient is defined by

- 2 s
K = Nxcrb /(ET t)

where ixcr denotes the critical value of

uniform compressive load intensity ix‘ The

buckling coefficient for CLT is independent of
the thickness ratio ts/b [3]).. It is clear from
the figure that transverse shearing
deformations have a significant effect on the
buckling coefficient for these thick plates.
However, the differences between K for
CLT and SDT decrease as the ratio t,/t.

decreases from unity.

Plots of the out-of-plane displacement
component of the buckling mode for -0.5 S x/a
£ 0.5 at y = b/2 are shown in Figs. 3 and 4.
The buckling mode was normalized such that the
maximum displacement is unity. In Fig. 3 the
mode shapes are shown for SDT with t/b = 0.2
and for various ratios of t,/t,. For small

values of t;/t, a discontinuous slope in the

displacement occurs at the step, and the
majority of the strain energy due to buckling
is stored in the thin section rather than the
thick section. The buckling modes for CLT and .
SDT with t/b =« 0.1 and 0.2 are shown for.

comparison in Fig. 4 with t,/t, = 0.75. The

slope is continuous at the step for CLT and for
SDT with t/b = 0.1. For SDT with t/b = 0.2,
however, the slope at the step 1s
discontinuous. Thus, the buckling modes can
be significantly different for SDT with respect
to CLT.
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Fig. 2 Dimensionless buckling coefficient as a
function of t;/t, for CLT, SDT with t/b = 0.1,

and SDT with t/b = 0.2
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Fig. 3 Buckling modes for SDT with t/b =w0.2
and ,various ratios of t,/t,; y = b/2.
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Fig.4 Buckling modes with t,/t, = 0.75 for CLT,
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